Home

bogi Hafnaðu litarefni clip 170 kítti Starfsgrein tvíburi

Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP  network superstructure consistent with a biomolecular condensate | PLOS ONE
Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate | PLOS ONE

Quelle fonction pour la CLIP-170? : recherche de partenaires et nouveaux  outils d'investigation | Semantic Scholar
Quelle fonction pour la CLIP-170? : recherche de partenaires et nouveaux outils d'investigation | Semantic Scholar

Cdc2-mediated Phosphorylation of CLIP-170 Is Essential for Its Inhibition  of Centrosome Reduplication*
Cdc2-mediated Phosphorylation of CLIP-170 Is Essential for Its Inhibition of Centrosome Reduplication*

CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology | Journal of  Neuroscience
CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology | Journal of Neuroscience

The microtubule plus-end-tracking protein CLIP-170 associates with the  spermatid manchette and is essential for spermatogenesis
The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis

CLIP-170S is a microtubule +TIP variant that confers resistance  to taxanes by impairing drug-target engageme
CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes by impairing drug-target engageme

CLIP-170S is a microtubule +TIP variant that confers resistance  to taxanes by impairing drug-target engageme
CLIP-170S is a microtubule +TIP variant that confers resistance to taxanes by impairing drug-target engageme

Microtubule Capture: IQGAP and CLIP-170 Expand the Repertoire: Current  Biology
Microtubule Capture: IQGAP and CLIP-170 Expand the Repertoire: Current Biology

Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus  end association in the nervous system | Molecular Biology of the Cell
Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system | Molecular Biology of the Cell

Ninein is essential for apico-basal microtubule formation and CLIP-170  facilitates its redeployment to non-centrosomal microtubule organizing  centres | Open Biology
Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres | Open Biology

biosights: October 26, 2015 - CLIP-170 tips its hand in viral transport -  YouTube
biosights: October 26, 2015 - CLIP-170 tips its hand in viral transport - YouTube

Interactions between CLIP-170, Tubulin, and Microtubules: Implications for  the Mechanism of CLIP-170 Plus-End Tracking Behavior | Molecular Biology of  the Cell
Interactions between CLIP-170, Tubulin, and Microtubules: Implications for the Mechanism of CLIP-170 Plus-End Tracking Behavior | Molecular Biology of the Cell

Selective visualization of growing MT ends with CLIP170. CHO cells were...  | Download Scientific Diagram
Selective visualization of growing MT ends with CLIP170. CHO cells were... | Download Scientific Diagram

RCSB PDB - 2E3I: Crystal structure of the CLIP-170 CAP-Gly domain 1
RCSB PDB - 2E3I: Crystal structure of the CLIP-170 CAP-Gly domain 1

PS1 as an anchor of vesicles for CLIP-170. A) Diagrammatic... | Download  Scientific Diagram
PS1 as an anchor of vesicles for CLIP-170. A) Diagrammatic... | Download Scientific Diagram

CLIP-170 Highlights Growing Microtubule Ends In Vivo: Cell
CLIP-170 Highlights Growing Microtubule Ends In Vivo: Cell

Conformational changes in CLIP-170 regulate its binding to microtubules and  dynactin localization. - Abstract - Europe PMC
Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. - Abstract - Europe PMC

The CLIP-170 N-terminal domain binds directly to both F-actin and  microtubules in a mutually exclusive manner
The CLIP-170 N-terminal domain binds directly to both F-actin and microtubules in a mutually exclusive manner

CLIP-170 is essential for MTOC repositioning during T cell activation by  regulating dynein localisation on the cell surface | Scientific Reports
CLIP-170 is essential for MTOC repositioning during T cell activation by regulating dynein localisation on the cell surface | Scientific Reports

H. Goodson - Microtubule Plus-ends
H. Goodson - Microtubule Plus-ends

α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation  of Dynein-Driven Transport in Neurons - ScienceDirect
α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons - ScienceDirect

CLIP-170 Antibody (F-3) | SCBT - Santa Cruz Biotechnology
CLIP-170 Antibody (F-3) | SCBT - Santa Cruz Biotechnology

Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP  network superstructure consistent with a biomolecular
Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular

CLIP‐170 spatially modulates receptor tyrosine kinase recycling to  coordinate cell migration - Zaoui - 2019 - Traffic - Wiley Online Library
CLIP‐170 spatially modulates receptor tyrosine kinase recycling to coordinate cell migration - Zaoui - 2019 - Traffic - Wiley Online Library

Characterizing interactions between the microtubule-binding protein CLIP-170  and F-actin | bioRxiv
Characterizing interactions between the microtubule-binding protein CLIP-170 and F-actin | bioRxiv

Phosphorylation of CLIP‐170 by Plk1 and CK2 promotes timely formation of  kinetochore–microtubule attachments | The EMBO Journal
Phosphorylation of CLIP‐170 by Plk1 and CK2 promotes timely formation of kinetochore–microtubule attachments | The EMBO Journal

Ninein is essential for apico-basal microtubule formation and CLIP-170  facilitates its redeployment to non-centrosomal microtubule organizing  centres | Open Biology
Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres | Open Biology